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SEM4ARY

The magnetization and magnetostriction study reported here is part
of a research program undertaken to determine the nature of the magneto-
striction in the rare earth (R)-Fe 2 compounds. In this paper is detailed
the correla tion between the magne tostriction and magneti zation for TmFe2 .
Studies were made as a function of temperature from 4°K to 300°K.

TmFe2, because of its highly anisotropic 4f charge distribution ,
displays a huge magnetocrystalline anisotropy (K1) and inagnetostriction(A ui ) at cryogenic temperatures in spite of the h~~h cubic symmetry of the
Cl~ lattice and the tetrahedral symmetry of the Tm site . Magnetostriction
measurements are consistent with IX >> IX~,.~ I, and yield a saturation value
of ~~~ = -3520 x 10 . The temperature dependence of X

1~~ 
closely follows

single-ion magnetoelastic theory.

The study was carried out in the Solid State Branch of the Radiation
Division as part of the research program on magn etostrictive material .
The research was sponsored by the Office of Naval Research (P0 4-0081, NR
039-110) and the NSWC Independent Research Funds .
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LOW TEMPERATURE MAGNETIZATION AND MAGNETOSTRICTION OF SINGLE CRYSTAL TmFe2 *

R. Abbundi and A. E. Clark
Naval Surface Weapons Center

White Oak , Silver Spring, MD 20910

ABSTRACT princi pal directions at room temperature. A huge nag-
itetic anisotropy is prc~ent at low temperaturos.

The magnetization and magnetostriction of single Taking the saturation moment from Fig. I to he 74 emu/g
crystal TmFe.. were measured as s function of tempera- (3

~
72
~b) 

and a gJ value of nib for Tm3’
~, we calcula te

ture from 4K’ to 300K. TrnFe,, because of it s hi ghly a Fe moment of 
~~~~~~ 

in good agreement with that of
anisotropic 4f charge distribution , displays a huge other RFe2 compounds. (4,6,7] A rare earth moment , siR.
magnetocrystalline anisotropy (K1) and magnetostriction less than nib, would result in a correspondingly smaller
(A 1 1 1 )  at cryogenic temperatures in spite of the high iron moment , 

~Fe~ 
In the single crystal , the compensa-

cubic symmetry of the ClS lattice and the tetrahedral tion point is shifted only slightly from the ear l ier
symmetry of the Tm3 5site. The aniaotropy spans the measurements on polycrystals.
range from -5.3 x 10 erg/cm3 at room tern2erature to
the extrapolated value of -5 x 108 erg/cm3 at 0 K. The ____________________________________
saturated magnetic moment was found to be 74 emu/g,
which is substantially larger than previous polycrystal~

. 80
line results. Magnetostrict ion measurements are con- TmFe~siatent with jx~. >> 1A 1 I and yield a saturation val-
ue of 1111(0) = -.~S20 x ~~~ which is appreciably 10 

— —- SINGLE CRYSTAL 11111larger than that previously reported. The rapid fall 
——— POLYCRYSTAL (AFTER BURZO(of the Tm3~ sublatt ice moment wi th temperature resul ts 60 -

in a ra ther low value of 1111 = -210 x 10 6 at 300K .
The temperature dependence of 11 11 closely follows
single-ion inagnetoelastic theory. 50 — -....

‘NNINTRODUCTION
~~40- 

“s

\Desp ite the overall  cubic symmetry and the h igh \
local symmetry at the rare earth si te , the rare earth- ~ 30-Fe2 compounds possess huge magnetostrictions and nag- \
netic anisotropies , which extend , in many cases , as \
hi gh as room tempecature. The compounds TbFe2 and
SmFe2 yield magnetostrictions: IA(300K)(>2000 ppm . U] 20 -

ThFe2 and Dy?e 2 possess anisotropies : IK l (300Kfl>107 \
\erg/cm3. 11 .2] These compounds have relatively satu- iol— \rated rare earth magnetizations at room temperature ,

thus only moderate increases in magnetostriction and ‘N
0 •anisotropy occur at reduced temperatures. o too 200 300

TmFe2 however , possesses a rather small magneto-
strict ion and magnetic anisotropy at room temperature. T(K(
Here we show that this is directly correlated with the
rather low value of the Tm3” sublattice moment at room Fi g. 1 Spontaneous magnetic moment of single crystal
temperature. In this paper, we report magnetization TmFe2 as a function of temperature.
measurements on single crystal TmFe2. From the aniso- —
tropy in the moment we determine the magnetocrystalline
anisotropy, K1. Finally we measure 1111 for TrnFe2 from 12

calcula ted from single-ion theory. Intrinsic values are 11
6-300 K. Temperature dependences are compared to those 

111)compared to those of other RFe2 compounds using Stevens ’
equivalen t operator coefficIents. 10

MAGNETIZATION ~ 
.11101

SThe ferrimagnetic nature of TaPe2 was identified by
Wallace and Skrabek [3] and by Burzo (4] with magnetiza-
tion measurements on polycrystalline samples. A corn- ~

T’217 K• pensat ion temperature was observed in TmFe2 at approxi-
mately 240 K , indicating a rapid drop of Tm3~ aublattice Dmoment with increasing temperature. In addition to this
rapid decrease, the intrinsic (TAO) moment itself was
reported to be very low, too low to be consistent with
reasonable assumptions of rare earth and iron sublattice
moments. Because of the potentially high anisotropy of
TmFe2 inferred from measurements on other RFe2’ com -
pounds, ( 2 ]  such a low value could result from non-iso- 2
tropic polycrystalline samples.

The single crystals of TmFe2 used in this experi- i -

_ _

ment were grown by 0. D. McMasters by horizontal zone
techniques. [5] In Fig. 1 , we show the spontaneous 0 ~~~ ‘

0 2 4 S S 10 12 14 IS 1$magnetic moment of single crystal Impel along its
crystallographic (111] easy axis. While the room tem- N(kos(
perature moment is similar to that observed earlier in Fig. 2 Room temperature magnetization along principalpolycrystals by Wallace 131 and Burzo, (4] the low-tern- crystallographic direction s of single crystalperature moment (ag(O)) is substantially larger. h g .  2 rmpe.,.
Illustrates the magnetization curves along the three

3

- 
—-~~~ - . —
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MAGNETOSTRICTION A small forced magnetostriction is observed at all
temperatures above 15 K. Fig. 4 illustrates this be-

Because of the rapid fall of the sublattice moment havior near Tcomp~ Below 234 K , the agnetostrict ion
with temperature, we expect a very low value of magneto- increases with magnetic field as the rare earth sublat-
striction at room temperature for TmFe2. Indeed this is tice becomes further aligned. Above Tcomp , where the
the case for polycrystalline TmFe2: ~~ 

A 123 X 10 6. rare earth sublattice points antiparallel to the field ,
[1] The single crystal value , 1111, is not much higher the magnetostriction decreases with increasing field.
(see Fig. 3). Since 1111>> 1100 for the Tb~Dy~~xFe2 Near magnetization compensation , where °R=°Fe; ~t IS
ternary alloys ,[8) it is plausible that here A lll >>A lo~ 

difficult to rotate the moments in the sample from one
hence 1 5 .6 1111 for TmFe2. From measurements at 6 K crystallite direction to another. Thus the full magneto-
we find the saturation value of 111 1(0) = -3520 x 10 6. strict ion is not sensed , resulting in a dip in observed

values. Precisely at Tcomp . the field is perpendicular
to the moments , resulting in an effective magnetostric-
tion (as referred to field axes) of opposite sign .

I S-3500 ’
T1.0II ___________________________________-3000 ’

.2500
xlII • .70O~ .—.- - N~25 ~0e -

~

~ -200

% .
~~~~~~ I TmFs2 ..4 \\~~~~~~~~~~~~~~~~~~~~~~~ ~

~1-150 

\
\

.40L N

-100 ‘ -300~-

-200 -

N

-50 -

10 15 20 25 o~H(kOeJ
I00~-

I 
~~~~~~~~Fig. 3 A 111 of single crystal TmFe2 at I = 6.0 K and 60 200 240 280 320300K.

1(K)
This does not agree with the earlier value of -2600 x
10.6 reported by Barbara.[9] In Table I , our value of Fig. 4 1111 of single crystal TmFe2 near
1111(0) is compared to the value for TbFe2, estimated extrapolatcd to II = 0 and for H — 2
previously from 100 K measurements. [10) Following
Stevens; [ I I ]  1111(0) ‘~ C a J ( J - l / 2 ) c r ~> . where J is the It has been observed previously [10] that the ten-
angular momentt~m quantum number, a is the “Stevens ’ perature dependence of A 111 for ThFe2 can be fit by the
fac tor” and r

~~ 
is the average radius squared of the 4f single-ion expression : It+l/2 [~~~

l (m R)] of Callen andelectron cloud. (12J The agreement between ImFe and
Callen [13] for L—2 . Here 

~t+l/2 
is a reduced BesselThFe2 is excellent. Taking C -0.017 ± 10% a;~ the function ; ~~-l , the inverse Langevin function; and mR, —

intrinsic magnetostrictions of the K3” ions in the RFe2 the reduced rare earth sublattice magnetization (M R(T) /lattice are calculated . Note that the largest “ .“ mag- Mg(O)). In ThFe2 the sublattice magnetization [9,14)netostrictions are predicted for CeFe2, PrFe2, ThFe2 and dro~s by only “13% and the temperature dependenceDyFe2, and the larges t “-“ magnetostrictions for SmFe2, follows closely the low temperature expansion : m~~
t4
~~

’2
TmFe2 and YbFe2. Since Ce is essentially always quad-
rivalen t; Yb, divalent; and PrFe2 does not crystallize A> 4. [101 In TmFe2, a good test of the single-ion
into Laves phase structure , the remaining compounds are expression over a wide temperature range can be ob-
TbFe 2, DyFe2 . S.Fe2 and TmFe2. tam ed since , at 300 K, ag = .3. To calculate the the-

oret ical magnetos tric t ion , it is necessary to know the
Table 1 . 1

111 (0) of R
3”Fe2 Compounds normalized sublattice moment , mR, as a function of tem-

perature. This can be determined directly from neutron
diffraction data, or from the total magnetization i.e.

R J axlO2 <r~i. (a0
2) 1111 (O)x l O6 Fig. 1, subtracting off the contribut ion of the Fe sub-

— lattice. The currently known neutron diffraction data
is not sufficiently accurate to determine mR(T) wi thCe 5/2 -5.72 1.20 5660
the required precision. (The neutron diffraction dataPr 4 -2.10 1 .086 5280 of both Rhyne [14] and Barbara [9] do not yield a corn-Nd 9/2 -0.643 1.001 1920

Sm 5/2 4.13 .883 -3010 
b) 

pensation point in the correct temperature region.)

Th 6 -1.01 .756 4160(4400 Hence , here we shall determine mR(T) from the total
Dy 15/2 -0.635 .726 4000 magnetization curve (Fig. I) minus ‘

~ e~
T
~’ 

where Mpe (O)
Ho 8 -0.222 .696 1540 is estimated from the rare earth moment of 8J. In

Pig. 5, we show the temperature dependence of 1111 fromEr 15/2 0.254 .666 1470
a 0 K to 300 K. We assume a small temperature dependenceTm 6 1.01 .639 -3520 for H e(T) consistent with a variety of sources. 114 .Yb 7/2 3.18 .613 -3370 lS ,l6~ The dashed line Is the calculated curve with

a. This paper. UFe — 1.64 
~b 

and a 15% reduction In Fe moment from 0 K
S b. A. Clark , R. Abbundi , H. Savage and 0. McMasters, to ~OO K; the dash-dot line is a similar curve for a

PhysIcs 86-888, 73 (1977). 20% reduction. A small (~3%) reduction of the rare
earth moment from gJ , results in less than a few per-
cent change In the calculated magnetostriction ovcr the
entire temperature range. The agreement between exper-
iment and calculated curves Is e’tcellent .

4
- .- - -_ _ _ _ _ _ _ _ _ _ _ _ _  _ _  _ _ _  - -—-
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-400C ____________________________
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Fig. 5 1111 as a function of temperature of single Fig. 6 K1 of single crystal TmFe2 as a function of
crystal TmFe2. The dashed curves represent the temperature. The dashed curves represent the
magnetostricti on calculated from single-ion anisotropy calculated from single-ion theory.
theory.
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